Numer. Math. Theor. Meth. Appl., 14 (2021), pp. 355-376.
Published online: 2021-01
Cited by
- BibTex
- RIS
- TXT
This paper is concerned with numerical solutions of time-fractional parabolic equations. Due to the Caputo time derivative being involved, the solutions of equations are usually singular near the initial time $t = 0$ even for a smooth setting. Based on a simple change of variable $s = t^β$, an equivalent $s$-fractional differential equation is derived and analyzed. Two types of finite difference methods based on linear and quadratic approximations in the $s$-direction are presented, respectively, for solving the $s$-fractional differential equation. We show that the method based on the linear approximation provides the optimal accuracy $\mathcal{O}(N ^{−(2−α)})$ where $N$ is the number of grid points in temporal direction. Numerical examples for both linear and nonlinear fractional equations are presented in comparison with $L1$ methods on uniform meshes and graded meshes, respectively. Our numerical results show clearly the accuracy and efficiency of the proposed methods.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2020-0129}, url = {http://global-sci.org/intro/article_detail/nmtma/18603.html} }This paper is concerned with numerical solutions of time-fractional parabolic equations. Due to the Caputo time derivative being involved, the solutions of equations are usually singular near the initial time $t = 0$ even for a smooth setting. Based on a simple change of variable $s = t^β$, an equivalent $s$-fractional differential equation is derived and analyzed. Two types of finite difference methods based on linear and quadratic approximations in the $s$-direction are presented, respectively, for solving the $s$-fractional differential equation. We show that the method based on the linear approximation provides the optimal accuracy $\mathcal{O}(N ^{−(2−α)})$ where $N$ is the number of grid points in temporal direction. Numerical examples for both linear and nonlinear fractional equations are presented in comparison with $L1$ methods on uniform meshes and graded meshes, respectively. Our numerical results show clearly the accuracy and efficiency of the proposed methods.