Numer. Math. Theor. Meth. Appl., 14 (2021), pp. 1-30.
Published online: 2020-10
Cited by
- BibTex
- RIS
- TXT
We consider a time discretization of incompressible Navier-Stokes equations with spatial periodic boundary conditions and additive noise in the vorticity-velocity formulation. The approximation is based on freezing the velocity on time subintervals resulting in a linear stochastic parabolic equation for vorticity. At each time step, the velocity is expressed via vorticity using a formula corresponding to the Biot-Savart-type law. We prove the first mean-square convergence order of the vorticity approximation.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2020-0034}, url = {http://global-sci.org/intro/article_detail/nmtma/18325.html} }We consider a time discretization of incompressible Navier-Stokes equations with spatial periodic boundary conditions and additive noise in the vorticity-velocity formulation. The approximation is based on freezing the velocity on time subintervals resulting in a linear stochastic parabolic equation for vorticity. At each time step, the velocity is expressed via vorticity using a formula corresponding to the Biot-Savart-type law. We prove the first mean-square convergence order of the vorticity approximation.