- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 13 (2020), pp. 479-496.
Published online: 2020-03
Cited by
- BibTex
- RIS
- TXT
A Godunov-type finite volume scheme on unstructured grids is proposed to numerically solve the Savage-Hutter equations in curvilinear coordinate. We show the direct observation that the model isn't a Galilean invariant system. At the cell boundary, the modified Harten-Lax-van Leer (HLL) approximate Riemann solver is adopted to calculate the numerical flux. The modified HLL flux is not troubled by the lack of Galilean invariance of the model and it is helpful to handle discontinuities at free interface. Rigidly the system is not always a hyperbolic system due to the dependence of flux on the velocity gradient. Even so, our numerical results still show quite good agreements with reference solutions. The simulations for granular avalanche flows with shock waves indicate that the scheme is applicable.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2019-0080}, url = {http://global-sci.org/intro/article_detail/nmtma/15488.html} }A Godunov-type finite volume scheme on unstructured grids is proposed to numerically solve the Savage-Hutter equations in curvilinear coordinate. We show the direct observation that the model isn't a Galilean invariant system. At the cell boundary, the modified Harten-Lax-van Leer (HLL) approximate Riemann solver is adopted to calculate the numerical flux. The modified HLL flux is not troubled by the lack of Galilean invariance of the model and it is helpful to handle discontinuities at free interface. Rigidly the system is not always a hyperbolic system due to the dependence of flux on the velocity gradient. Even so, our numerical results still show quite good agreements with reference solutions. The simulations for granular avalanche flows with shock waves indicate that the scheme is applicable.