- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 13 (2020), pp. 353-371.
Published online: 2020-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the unilateral obstacle problem, trying to find the numerical solution and coincidence set. We construct an equivalent format of the original problem and propose a method with a second-order in time dissipative system for solving the equivalent format. Several numerical examples are given to illustrate the effectiveness and stability of the proposed algorithm. Convergence speed comparisons with existent numerical algorithm are also provided and our algorithm is fast.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2019-0109}, url = {http://global-sci.org/intro/article_detail/nmtma/15462.html} }In this paper, we consider the unilateral obstacle problem, trying to find the numerical solution and coincidence set. We construct an equivalent format of the original problem and propose a method with a second-order in time dissipative system for solving the equivalent format. Several numerical examples are given to illustrate the effectiveness and stability of the proposed algorithm. Convergence speed comparisons with existent numerical algorithm are also provided and our algorithm is fast.