- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 12 (2019), pp. 661-680.
Published online: 2019-04
Cited by
- BibTex
- RIS
- TXT
We consider a splitting method for the numerical solution of the regularized Kobayashi-Warren-Carter (KWC) system which describes the growth of single crystal particles of different orientations in two spatial dimensions. The KWC model is a system of two nonlinear parabolic PDEs representing gradient flows associated with a free energy in two variables. Based on an implicit time discretization by the backward Euler method, we suggest a splitting method and prove the existence as well as the energy stability of a solution. The discretization in space is taken care of by Lagrangian finite elements with respect to a geometrically conforming, shape regular, simplicial triangulation of the computational domain and requires the successive solution of two individual discrete elliptic problems. Viewing the time as a parameter, the fully discrete equations represent a parameter dependent nonlinear system which is solved by a predictor corrector continuation strategy with an adaptive choice of the time step size. Numerical results illustrate the performance of the splitting method.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2018-0050}, url = {http://global-sci.org/intro/article_detail/nmtma/13125.html} }We consider a splitting method for the numerical solution of the regularized Kobayashi-Warren-Carter (KWC) system which describes the growth of single crystal particles of different orientations in two spatial dimensions. The KWC model is a system of two nonlinear parabolic PDEs representing gradient flows associated with a free energy in two variables. Based on an implicit time discretization by the backward Euler method, we suggest a splitting method and prove the existence as well as the energy stability of a solution. The discretization in space is taken care of by Lagrangian finite elements with respect to a geometrically conforming, shape regular, simplicial triangulation of the computational domain and requires the successive solution of two individual discrete elliptic problems. Viewing the time as a parameter, the fully discrete equations represent a parameter dependent nonlinear system which is solved by a predictor corrector continuation strategy with an adaptive choice of the time step size. Numerical results illustrate the performance of the splitting method.