- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 12 (2019), pp. 640-660.
Published online: 2018-12
Cited by
- BibTex
- RIS
- TXT
An optimized two-step hybrid block method is presented for integrating general second order initial value problems numerically. The method considers two intra-step points which are selected adequately in order to optimize the local truncation errors of the main formulas for the solution and the first derivative at the final point of the block. The new proposed method is consistent, zero-stable and has seventh algebraic order of convergence. To illustrate the performance of the method, some numerical experiments are presented for solving this kind of problems, in comparison with methods of similar characteristics in the literature.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2018-0036}, url = {http://global-sci.org/intro/article_detail/nmtma/12913.html} }An optimized two-step hybrid block method is presented for integrating general second order initial value problems numerically. The method considers two intra-step points which are selected adequately in order to optimize the local truncation errors of the main formulas for the solution and the first derivative at the final point of the block. The new proposed method is consistent, zero-stable and has seventh algebraic order of convergence. To illustrate the performance of the method, some numerical experiments are presented for solving this kind of problems, in comparison with methods of similar characteristics in the literature.