- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 11 (2018), pp. 827-853.
Published online: 2018-06
Cited by
- BibTex
- RIS
- TXT
In this paper, we study linear systems arising from time-space fractional Caputo-Riesz diffusion equations with time-dependent diffusion coefficients. The coefficient matrix is a summation of a block-lower-triangular-Toeplitz matrix (temporal component) and a block-diagonal-with-diagonal-times-Toeplitz-block matrix (spatial component). The main aim of this paper is to propose separable preconditioners for solving these linear systems, where a block ϵ-circulant preconditioner is used for the temporal component, while a block diagonal approximation is used for the spatial variable. The resulting preconditioner can be block-diagonalized in the temporal domain. Furthermore, the fast solvers can be employed to solve smaller linear systems in the spatial domain. Theoretically, we show that if the diffusion coefficient (temporal-dependent or spatial-dependent only) function is smooth enough, the singular values of the preconditioned matrix are bounded independent of discretization parameters. Numerical examples are tested to show the performance of proposed preconditioner.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2018.s09}, url = {http://global-sci.org/intro/article_detail/nmtma/12475.html} }In this paper, we study linear systems arising from time-space fractional Caputo-Riesz diffusion equations with time-dependent diffusion coefficients. The coefficient matrix is a summation of a block-lower-triangular-Toeplitz matrix (temporal component) and a block-diagonal-with-diagonal-times-Toeplitz-block matrix (spatial component). The main aim of this paper is to propose separable preconditioners for solving these linear systems, where a block ϵ-circulant preconditioner is used for the temporal component, while a block diagonal approximation is used for the spatial variable. The resulting preconditioner can be block-diagonalized in the temporal domain. Furthermore, the fast solvers can be employed to solve smaller linear systems in the spatial domain. Theoretically, we show that if the diffusion coefficient (temporal-dependent or spatial-dependent only) function is smooth enough, the singular values of the preconditioned matrix are bounded independent of discretization parameters. Numerical examples are tested to show the performance of proposed preconditioner.