- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 11 (2018), pp. 729-751.
Published online: 2018-06
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose and analyze a spectral deferred correction method for the fractional differential equation of order α. The proposed method is based on a well-known finite difference method of $(2−α)$-order, see [Sun and Wu, Appl. Numer. Math., 56(2), 2006] and [Lin and Xu, J. Comput. Phys., 225(2), 2007], for prediction of the numerical solution, which is then corrected through a spectral deferred correction method. In order to derive the convergence rate of the prediction-correction iteration, we first derive an error estimate for the $(2−α)$-order finite difference method on some non-uniform meshes. Then the convergence rate of orders $\mathcal{O}(τ^{(2−α)(p+1)})$ and $\mathcal{O}(τ^{(2−α)+p})$ of the overall scheme is demonstrated numerically for the uniform mesh and the Gauss-Lobatto mesh respectively, where $τ$ is the maximal time step size and $p$ is the number of correction steps. The performed numerical test confirms the efficiency of the proposed method.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2018.s03}, url = {http://global-sci.org/intro/article_detail/nmtma/12469.html} }In this paper, we propose and analyze a spectral deferred correction method for the fractional differential equation of order α. The proposed method is based on a well-known finite difference method of $(2−α)$-order, see [Sun and Wu, Appl. Numer. Math., 56(2), 2006] and [Lin and Xu, J. Comput. Phys., 225(2), 2007], for prediction of the numerical solution, which is then corrected through a spectral deferred correction method. In order to derive the convergence rate of the prediction-correction iteration, we first derive an error estimate for the $(2−α)$-order finite difference method on some non-uniform meshes. Then the convergence rate of orders $\mathcal{O}(τ^{(2−α)(p+1)})$ and $\mathcal{O}(τ^{(2−α)+p})$ of the overall scheme is demonstrated numerically for the uniform mesh and the Gauss-Lobatto mesh respectively, where $τ$ is the maximal time step size and $p$ is the number of correction steps. The performed numerical test confirms the efficiency of the proposed method.