- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 11 (2018), pp. 604-617.
Published online: 2018-11
Cited by
- BibTex
- RIS
- TXT
The weak Galerkin finite element method is a class of recently and rapidly developed numerical tools for approximating partial differential equations. Unlike the standard Galerkin method, its trial and test function spaces consist of totally discontinuous piecewisely defined polynomials in the whole domain. This method has been vastly applied to many fields [22, 28, 31, 44, 50-52]. In this paper, we will apply this method to approximate a stochastic parabolic partial differential equation. We set up a semi-discrete numerical scheme for the stochastic partial differential equations and derive the optimal order for error estimates in the sense of strong convergence.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2017-OA-0122}, url = {http://global-sci.org/intro/article_detail/nmtma/12446.html} }The weak Galerkin finite element method is a class of recently and rapidly developed numerical tools for approximating partial differential equations. Unlike the standard Galerkin method, its trial and test function spaces consist of totally discontinuous piecewisely defined polynomials in the whole domain. This method has been vastly applied to many fields [22, 28, 31, 44, 50-52]. In this paper, we will apply this method to approximate a stochastic parabolic partial differential equation. We set up a semi-discrete numerical scheme for the stochastic partial differential equations and derive the optimal order for error estimates in the sense of strong convergence.