- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 11 (2018), pp. 235-246.
Published online: 2018-11
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose the Uzawa splitting iteration method for solving a class of singular saddle point problems. The semi-convergence of the Uzawa splitting iteration method is carefully analyzed, which shows that the iteration sequence generated by this method converges to a solution of the singular saddle point problems under certain conditions. Moreover, the characteristics of the eigenvalues and eigenvectors of the iteration matrix of the proposed method are studied. The theoretical results are supported by the numerical experiments, which implies that Uzawa splitting iteration method is effective and feasible for solving singular saddle point problems.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2018.m1622}, url = {http://global-sci.org/intro/article_detail/nmtma/12428.html} }In this paper, we propose the Uzawa splitting iteration method for solving a class of singular saddle point problems. The semi-convergence of the Uzawa splitting iteration method is carefully analyzed, which shows that the iteration sequence generated by this method converges to a solution of the singular saddle point problems under certain conditions. Moreover, the characteristics of the eigenvalues and eigenvectors of the iteration matrix of the proposed method are studied. The theoretical results are supported by the numerical experiments, which implies that Uzawa splitting iteration method is effective and feasible for solving singular saddle point problems.