- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 8 (2015), pp. 496-514.
Published online: 2015-08
Cited by
- BibTex
- RIS
- TXT
This paper deals with a more general class of singularly perturbed boundary value problem for a differential-difference equations with small shifts. In particular, the numerical study for the problems where second order derivative is multiplied by a small parameter $ε$ and the shifts depend on the small parameter $ε$ has been considered. The fitted-mesh technique is employed to generate a piecewise-uniform mesh, condensed in the neighborhood of the boundary layer. The cubic B-spline basis functions with fitted-mesh are considered in the procedure which yield a tridiagonal system which can be solved efficiently by using any well-known algorithm. The stability and parameter-uniform convergence analysis of the proposed method have been discussed. The method has been shown to have almost second-order parameter-uniform convergence. The effect of small parameters on the boundary layer has also been discussed. To demonstrate the performance of the proposed scheme, several numerical experiments have been carried out.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2015.my14005}, url = {http://global-sci.org/intro/article_detail/nmtma/12420.html} }This paper deals with a more general class of singularly perturbed boundary value problem for a differential-difference equations with small shifts. In particular, the numerical study for the problems where second order derivative is multiplied by a small parameter $ε$ and the shifts depend on the small parameter $ε$ has been considered. The fitted-mesh technique is employed to generate a piecewise-uniform mesh, condensed in the neighborhood of the boundary layer. The cubic B-spline basis functions with fitted-mesh are considered in the procedure which yield a tridiagonal system which can be solved efficiently by using any well-known algorithm. The stability and parameter-uniform convergence analysis of the proposed method have been discussed. The method has been shown to have almost second-order parameter-uniform convergence. The effect of small parameters on the boundary layer has also been discussed. To demonstrate the performance of the proposed scheme, several numerical experiments have been carried out.