- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 8 (2015), pp. 112-135.
Published online: 2015-08
Cited by
- BibTex
- RIS
- TXT
This paper provides an overview of the main ideas driving the bootstrap algebraic multigrid methodology, including compatible relaxation and algebraic distances for defining effective coarsening strategies, the least squares method for computing accurate prolongation operators and the bootstrap cycles for computing the test vectors that are used in the least squares process. We review some recent research in the development, analysis and application of bootstrap algebraic multigrid and point to open problems in these areas. Results from our previous research as well as some new results for some model diffusion problems with highly oscillatory diffusion coefficient are presented to illustrate the basic components of the BAMG algorithm.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2015.w06si}, url = {http://global-sci.org/intro/article_detail/nmtma/12402.html} }This paper provides an overview of the main ideas driving the bootstrap algebraic multigrid methodology, including compatible relaxation and algebraic distances for defining effective coarsening strategies, the least squares method for computing accurate prolongation operators and the bootstrap cycles for computing the test vectors that are used in the least squares process. We review some recent research in the development, analysis and application of bootstrap algebraic multigrid and point to open problems in these areas. Results from our previous research as well as some new results for some model diffusion problems with highly oscillatory diffusion coefficient are presented to illustrate the basic components of the BAMG algorithm.