- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 8 (2015), pp. 97-111.
Published online: 2015-08
Cited by
- BibTex
- RIS
- TXT
In this paper we present a new computationally efficient numerical scheme for the minimizing flow for the computation of the optimal $L_2$ mass transport mapping using the fluid approach. We review the method and discuss its numerical properties. We then derive a new scaleable, efficient discretization and a solution technique for the problem and show that the problem is equivalent to a mixed form formulation of a nonlinear fluid flow in porous media. We demonstrate the effectiveness of our approach using a number of numerical experiments.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2015.w02si}, url = {http://global-sci.org/intro/article_detail/nmtma/12401.html} }In this paper we present a new computationally efficient numerical scheme for the minimizing flow for the computation of the optimal $L_2$ mass transport mapping using the fluid approach. We review the method and discuss its numerical properties. We then derive a new scaleable, efficient discretization and a solution technique for the problem and show that the problem is equivalent to a mixed form formulation of a nonlinear fluid flow in porous media. We demonstrate the effectiveness of our approach using a number of numerical experiments.