- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 9 (2016), pp. 595-618.
Published online: 2016-09
Cited by
- BibTex
- RIS
- TXT
In this paper, the second order convergence of the interpolation based on $Q^c_1$-element is derived in the case of $d$=1, 2 and 3. Using the integral average on each element, the new basis functions of tensor product type is builded up and we can easily extend it to the higher dimensional case. Finally, some numerical tests are made to show the analytical results of the interpolation errors.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2016.m1503}, url = {http://global-sci.org/intro/article_detail/nmtma/12391.html} }In this paper, the second order convergence of the interpolation based on $Q^c_1$-element is derived in the case of $d$=1, 2 and 3. Using the integral average on each element, the new basis functions of tensor product type is builded up and we can easily extend it to the higher dimensional case. Finally, some numerical tests are made to show the analytical results of the interpolation errors.