- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 9 (2016), pp. 358-382.
Published online: 2016-09
Cited by
- BibTex
- RIS
- TXT
The anisotropic perfectly matched layer (APML) defines a continuous vector field outside a rectangle domain and performs the complex coordinate stretching along the vector field. Inspired by [Z. Chen et al., Inverse Probl. Imag., 7, (2013):663--678] and based on the idea of the shortest distance, we propose a new approach to construct the vector field which still allows us to prove the exponential decay of the stretched Green function without the constraint on the thickness of the PML layer. Moreover, by using the reflection argument, we prove the stability of the PML problem in the PML layer and the convergence of the PML method. Numerical experiments are also included.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2016.m1505}, url = {http://global-sci.org/intro/article_detail/nmtma/12381.html} }The anisotropic perfectly matched layer (APML) defines a continuous vector field outside a rectangle domain and performs the complex coordinate stretching along the vector field. Inspired by [Z. Chen et al., Inverse Probl. Imag., 7, (2013):663--678] and based on the idea of the shortest distance, we propose a new approach to construct the vector field which still allows us to prove the exponential decay of the stretched Green function without the constraint on the thickness of the PML layer. Moreover, by using the reflection argument, we prove the stability of the PML problem in the PML layer and the convergence of the PML method. Numerical experiments are also included.