- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 10 (2017), pp. 597-613.
Published online: 2017-10
Cited by
- BibTex
- RIS
- TXT
This article is intended to fill in the blank of the numerical schemes with second-order convergence accuracy in time for nonlinear Stokes' first problem for a heated generalized second grade fluid with fractional derivative. A linearized difference scheme is proposed. The time fractional-order derivative is discretized by second-order shifted and weighted Grünwald-Letnikovv difference operator. The convergence accuracy in space is improved by performing the average operator. The presented numerical method is unconditionally stable with the global convergence order of $\mathcal{O}(τ^2+h^4)$ in maximum norm, where $τ$ and $h$ are the step sizes in time and space, respectively. Finally, numerical examples are carried out to verify the theoretical results, showing that our scheme is efficient indeed.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2017.m1605}, url = {http://global-sci.org/intro/article_detail/nmtma/12360.html} }This article is intended to fill in the blank of the numerical schemes with second-order convergence accuracy in time for nonlinear Stokes' first problem for a heated generalized second grade fluid with fractional derivative. A linearized difference scheme is proposed. The time fractional-order derivative is discretized by second-order shifted and weighted Grünwald-Letnikovv difference operator. The convergence accuracy in space is improved by performing the average operator. The presented numerical method is unconditionally stable with the global convergence order of $\mathcal{O}(τ^2+h^4)$ in maximum norm, where $τ$ and $h$ are the step sizes in time and space, respectively. Finally, numerical examples are carried out to verify the theoretical results, showing that our scheme is efficient indeed.