- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 10 (2017), pp. 737-759.
Published online: 2017-11
Cited by
- BibTex
- RIS
- TXT
In this paper, we discuss the blowup of Volterra integro-differential equations (VIDEs) with a dissipative linear term. To overcome the fluctuation of solutions, we establish a Razumikhin-type theorem to verify the unboundedness of solutions. We also introduce leaving-times and arriving-times for the estimation of the spending-times of solutions to $∞$. Based on these two typical techniques, the blowup and global existence of solutions to VIDEs with local and global integrable kernels are presented. As applications, the critical exponents of semi-linear Volterra diffusion equations (SLVDEs) on bounded domains with constant kernel are generalized to SLVDEs on bounded domains and $\mathbb{R}^N$ with some local integrable kernels. Moreover, the critical exponents of SLVDEs on both bounded domains and the unbounded domain $\mathbb{R}^N$ are investigated for global integrable kernels.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2016.0001}, url = {http://global-sci.org/intro/article_detail/nmtma/10454.html} }In this paper, we discuss the blowup of Volterra integro-differential equations (VIDEs) with a dissipative linear term. To overcome the fluctuation of solutions, we establish a Razumikhin-type theorem to verify the unboundedness of solutions. We also introduce leaving-times and arriving-times for the estimation of the spending-times of solutions to $∞$. Based on these two typical techniques, the blowup and global existence of solutions to VIDEs with local and global integrable kernels are presented. As applications, the critical exponents of semi-linear Volterra diffusion equations (SLVDEs) on bounded domains with constant kernel are generalized to SLVDEs on bounded domains and $\mathbb{R}^N$ with some local integrable kernels. Moreover, the critical exponents of SLVDEs on both bounded domains and the unbounded domain $\mathbb{R}^N$ are investigated for global integrable kernels.