- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The fast solutions of Crank-Nicolson scheme on quasi-uniform mesh for parabolic problems are discussed. First, to decrease regularity requirements of solutions, some new error estimates are proved. Second, we analyze the two characteristics of parabolic discrete scheme, and find that the efficiency of Multigrid Method (MG) is greatly reduced. Numerical experiments compare the efficiency of Direct Conjugate Gradient Method (DCG) and Extrapolation Cascadic Multigrid Method (EXCMG). Last, we propose a Time-Extrapolation Algorithm (TEA), which takes a linear combination of previous several level solutions as good initial values to accelerate the rate of convergence. Some typical extrapolation formulas are compared numerically. And we find that under certain accuracy requirement, the CG iteration count for the 3-order and 7-level extrapolation formula is about 1/3 of that of DCG's. Since the TEA algorithm is independent of the space dimension, it is still valid for quasi-uniform meshes. As only the finest grid is needed, the proposed method is regarded very effective for nonlinear parabolic problems.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1310-FE1}, url = {http://global-sci.org/intro/article_detail/jcm/9877.html} }The fast solutions of Crank-Nicolson scheme on quasi-uniform mesh for parabolic problems are discussed. First, to decrease regularity requirements of solutions, some new error estimates are proved. Second, we analyze the two characteristics of parabolic discrete scheme, and find that the efficiency of Multigrid Method (MG) is greatly reduced. Numerical experiments compare the efficiency of Direct Conjugate Gradient Method (DCG) and Extrapolation Cascadic Multigrid Method (EXCMG). Last, we propose a Time-Extrapolation Algorithm (TEA), which takes a linear combination of previous several level solutions as good initial values to accelerate the rate of convergence. Some typical extrapolation formulas are compared numerically. And we find that under certain accuracy requirement, the CG iteration count for the 3-order and 7-level extrapolation formula is about 1/3 of that of DCG's. Since the TEA algorithm is independent of the space dimension, it is still valid for quasi-uniform meshes. As only the finest grid is needed, the proposed method is regarded very effective for nonlinear parabolic problems.