- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
On the Error Estimates of a New Operator Splitting Method for the Navier-Stokes Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-32-75,
author = {Hongen Jia, Kaimin Teng and Kaitai Li},
title = {On the Error Estimates of a New Operator Splitting Method for the Navier-Stokes Equations},
journal = {Journal of Computational Mathematics},
year = {2014},
volume = {32},
number = {1},
pages = {75--92},
abstract = {
In this paper, a new operator splitting scheme is introduced for the numerical solution of the incompressible Navier-Stokes equations. Under some mild regularity assumptions on the PDE solution, the stability of the scheme is presented, and error estimates for the velocity and the pressure of the proposed operator splitting scheme are given.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1310-m4211}, url = {http://global-sci.org/intro/article_detail/jcm/9870.html} }
TY - JOUR
T1 - On the Error Estimates of a New Operator Splitting Method for the Navier-Stokes Equations
AU - Hongen Jia, Kaimin Teng & Kaitai Li
JO - Journal of Computational Mathematics
VL - 1
SP - 75
EP - 92
PY - 2014
DA - 2014/02
SN - 32
DO - http://doi.org/10.4208/jcm.1310-m4211
UR - https://global-sci.org/intro/article_detail/jcm/9870.html
KW - Fractional step methods, Navier-Stokes Problem, Operator splitting, Projection method.
AB -
In this paper, a new operator splitting scheme is introduced for the numerical solution of the incompressible Navier-Stokes equations. Under some mild regularity assumptions on the PDE solution, the stability of the scheme is presented, and error estimates for the velocity and the pressure of the proposed operator splitting scheme are given.
Hongen Jia, Kaimin Teng and Kaitai Li. (2014). On the Error Estimates of a New Operator Splitting Method for the Navier-Stokes Equations.
Journal of Computational Mathematics. 32 (1).
75-92.
doi:10.4208/jcm.1310-m4211
Copy to clipboard