- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
It is well-known that artificial boundary conditions are crucial for the efficient and accurate computations of wavefields on unbounded domains. In this paper, we investigate stability analysis for the wave equation coupled with the first and the second order absorbing boundary conditions. The computational scheme is also developed. The approach allows the absorbing boundary conditions to be naturally imposed, which makes it easier for us to construct high order schemes for the absorbing boundary conditions. A third-order Lagrange finite element method with mass lumping is applied to obtain the spatial discretization of the wave equation. The resulting scheme is stable and is very efficient since no matrix inversion is needed at each time step. Moreover, we have shown both abstract and explicit conditional stability results for the fully-discrete schemes. The results are helpful for designing computational parameters in computations. Numerical computations are illustrated to show the efficiency and accuracy of our method. In particular, essentially no boundary reflection is seen at the artificial boundaries.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1310-m3942}, url = {http://global-sci.org/intro/article_detail/jcm/9866.html} }It is well-known that artificial boundary conditions are crucial for the efficient and accurate computations of wavefields on unbounded domains. In this paper, we investigate stability analysis for the wave equation coupled with the first and the second order absorbing boundary conditions. The computational scheme is also developed. The approach allows the absorbing boundary conditions to be naturally imposed, which makes it easier for us to construct high order schemes for the absorbing boundary conditions. A third-order Lagrange finite element method with mass lumping is applied to obtain the spatial discretization of the wave equation. The resulting scheme is stable and is very efficient since no matrix inversion is needed at each time step. Moreover, we have shown both abstract and explicit conditional stability results for the fully-discrete schemes. The results are helpful for designing computational parameters in computations. Numerical computations are illustrated to show the efficiency and accuracy of our method. In particular, essentially no boundary reflection is seen at the artificial boundaries.