- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We consider the inverse scattering problem of determining the shape of a thin dielectric infinite cylinder having an open arc as cross section. Assuming that the electric field is polarized in the TM mode, this leads to a mixed boundary value problem for the Helmholtz equation defined in the exterior of an open arc in $R^2$. We suppose that the arc has mixed Dirichlet-impedance boundary condition, and try to recover the shape of the arc through the far field pattern by using the factorization method. However, we are not able to apply the basic theorem introduced by Kirsch to treat the far field operator $F$, and some auxiliary operators have to be considered. The theoretical validation of the factorization method to our problem is given in this paper, and some numerical results are presented to show the viability of our method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1505-m2014-0101}, url = {http://global-sci.org/intro/article_detail/jcm/9857.html} }We consider the inverse scattering problem of determining the shape of a thin dielectric infinite cylinder having an open arc as cross section. Assuming that the electric field is polarized in the TM mode, this leads to a mixed boundary value problem for the Helmholtz equation defined in the exterior of an open arc in $R^2$. We suppose that the arc has mixed Dirichlet-impedance boundary condition, and try to recover the shape of the arc through the far field pattern by using the factorization method. However, we are not able to apply the basic theorem introduced by Kirsch to treat the far field operator $F$, and some auxiliary operators have to be considered. The theoretical validation of the factorization method to our problem is given in this paper, and some numerical results are presented to show the viability of our method.