- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper presents a detailed review of both theory and algorithms for the Cheeger cut based on the graph 1-Laplacian. In virtue of the cell structure of the feasible set, we propose a cell descend (CD) framework for achieving the Cheeger cut. While plugging the relaxation to guarantee the decrease of the objective value in the feasible set, from which both the inverse power (IP) method and the steepest descent (SD) method can also be recovered, we are able to get two specified CD methods. Comparisons of all these methods are conducted on several typical graphs.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1506-m2014-0164}, url = {http://global-sci.org/intro/article_detail/jcm/9854.html} }This paper presents a detailed review of both theory and algorithms for the Cheeger cut based on the graph 1-Laplacian. In virtue of the cell structure of the feasible set, we propose a cell descend (CD) framework for achieving the Cheeger cut. While plugging the relaxation to guarantee the decrease of the objective value in the feasible set, from which both the inverse power (IP) method and the steepest descent (SD) method can also be recovered, we are able to get two specified CD methods. Comparisons of all these methods are conducted on several typical graphs.