- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper proposes nonlinear Lagrangians based on modified Fischer-Burmeister NCP functions for solving nonlinear programming problems with inequality constraints. The convergence theorem shows that the sequence of points generated by this nonlinear Lagrange algorithm is locally convergent when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions, and the error bound of solution, depending on the penalty parameter, is also established. It is shown that the condition number of the nonlinear Lagrangian Hessian at the optimal solution is proportional to the controlling penalty parameter. Moreover, the paper develops the dual algorithm associated with the proposed nonlinear Lagrangians. Numerical results reported suggest that the dual algorithm based on proposed nonlinear Lagrangians is effective for solving some nonlinear optimization problems.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1503-m2014-0044}, url = {http://global-sci.org/intro/article_detail/jcm/9850.html} }This paper proposes nonlinear Lagrangians based on modified Fischer-Burmeister NCP functions for solving nonlinear programming problems with inequality constraints. The convergence theorem shows that the sequence of points generated by this nonlinear Lagrange algorithm is locally convergent when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions, and the error bound of solution, depending on the penalty parameter, is also established. It is shown that the condition number of the nonlinear Lagrangian Hessian at the optimal solution is proportional to the controlling penalty parameter. Moreover, the paper develops the dual algorithm associated with the proposed nonlinear Lagrangians. Numerical results reported suggest that the dual algorithm based on proposed nonlinear Lagrangians is effective for solving some nonlinear optimization problems.