- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Image Quality Assessment (IQA) is a fundamental problem in image processing. It is a common principle that human vision is hierarchical: we first perceive global structural information such as contours then focus on local regional details if necessary. Following this principle, we propose a novel framework for IQA by quantifying the degenerations of structural information and region content separately, and mapping both to obtain the objective score. The structural information can be obtained as contours by contour detection techniques. Experiments are conducted to demonstrate its performance in comparison with multiple state-of-the-art methods on two large scale datasets.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1611-m2016-0534}, url = {http://global-sci.org/intro/article_detail/jcm/9821.html} }Image Quality Assessment (IQA) is a fundamental problem in image processing. It is a common principle that human vision is hierarchical: we first perceive global structural information such as contours then focus on local regional details if necessary. Following this principle, we propose a novel framework for IQA by quantifying the degenerations of structural information and region content separately, and mapping both to obtain the objective score. The structural information can be obtained as contours by contour detection techniques. Experiments are conducted to demonstrate its performance in comparison with multiple state-of-the-art methods on two large scale datasets.