- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A practical image reconstruction method for multi-source quantitative photoacoustic tomography (QPAT) is proposed in this work with the consideration of detector response function and limited-view scanning. First, the correct detector response function, i.e., spatial impulse response (SIR) and acousto-electric impulse response (EIR), is considered for the ultrasonic transducer to accurately model the acoustic measurement; second, acoustic data is only measured near optical sources with meaningful signal-to-noise ratio (SNR), i.e., the limited-view scanning, which also reduces the data acquisition time for point transducer. However, due to the incomplete limited-view data, a two-step image reconstruction method (i.e., to first reconstruct initial acoustic pressure and then reconstruct optical coefficients) no longer applies, since it is neither possible nor necessary to robustly reconstruct initial acoustic pressure with limited-view data. Therefore, here we propose a direct image reconstruction method that incorporates SIR, EIR and limited-view scanning in a coupled opto-acoustic forward model, regularizes the nonlinear QPAT data fidelity with tensor framelet sparsity, and then solves the QPAT problem with Quasi-Newton method based alternating direction method of multipliers.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1605-m2016-0528}, url = {http://global-sci.org/intro/article_detail/jcm/9815.html} }A practical image reconstruction method for multi-source quantitative photoacoustic tomography (QPAT) is proposed in this work with the consideration of detector response function and limited-view scanning. First, the correct detector response function, i.e., spatial impulse response (SIR) and acousto-electric impulse response (EIR), is considered for the ultrasonic transducer to accurately model the acoustic measurement; second, acoustic data is only measured near optical sources with meaningful signal-to-noise ratio (SNR), i.e., the limited-view scanning, which also reduces the data acquisition time for point transducer. However, due to the incomplete limited-view data, a two-step image reconstruction method (i.e., to first reconstruct initial acoustic pressure and then reconstruct optical coefficients) no longer applies, since it is neither possible nor necessary to robustly reconstruct initial acoustic pressure with limited-view data. Therefore, here we propose a direct image reconstruction method that incorporates SIR, EIR and limited-view scanning in a coupled opto-acoustic forward model, regularizes the nonlinear QPAT data fidelity with tensor framelet sparsity, and then solves the QPAT problem with Quasi-Newton method based alternating direction method of multipliers.