- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
X-ray computed tomography (CT) is one of widely used diagnostic tools for medical and dental tomographic imaging of the human body. However, the standard filtered back-projection reconstruction method requires the complete knowledge of the projection data. In the case of limited data, the inverse problem of CT becomes more ill-posed, which makes the reconstructed image deteriorated by the artifacts. In this paper, we consider two dimensional CT reconstruction using the projections truncated along the spatial direction in the Radon domain. Over the decades, the numerous results including the sparsity model based approach has enabled the reconstruction of the image inside the region of interest (ROI) from the limited knowledge of the data. However, unlike these existing methods, we try to reconstruct the entire CT image from the limited knowledge of the sinogram via the tight frame regularization and the simultaneous sinogram extrapolation. Our proposed model shows more promising numerical simulation results compared with the existing sparsity model based approach.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1605-m2016-0535}, url = {http://global-sci.org/intro/article_detail/jcm/9814.html} }X-ray computed tomography (CT) is one of widely used diagnostic tools for medical and dental tomographic imaging of the human body. However, the standard filtered back-projection reconstruction method requires the complete knowledge of the projection data. In the case of limited data, the inverse problem of CT becomes more ill-posed, which makes the reconstructed image deteriorated by the artifacts. In this paper, we consider two dimensional CT reconstruction using the projections truncated along the spatial direction in the Radon domain. Over the decades, the numerous results including the sparsity model based approach has enabled the reconstruction of the image inside the region of interest (ROI) from the limited knowledge of the data. However, unlike these existing methods, we try to reconstruct the entire CT image from the limited knowledge of the sinogram via the tight frame regularization and the simultaneous sinogram extrapolation. Our proposed model shows more promising numerical simulation results compared with the existing sparsity model based approach.