- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we discuss an adaptive hybrid stress finite element method on quadrilateral meshes for linear elasticity problems. To deal with hanging nodes arising in the adaptive mesh refinement, we propose new transition types of hybrid stress quadrilateral elements with 5 to 7 nodes. In particular, we derive a priori error estimation for the 5-node transition hybrid stress element to show that it is free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the Lamé constant λ. We introduce, for quadrilateral meshes, refinement/coarsening algorithms, which do not require storing the refinement tree explicitly, and give an adaptive algorithm. Finally, we provide some numerical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1511-m4496}, url = {http://global-sci.org/intro/article_detail/jcm/9800.html} }In this paper, we discuss an adaptive hybrid stress finite element method on quadrilateral meshes for linear elasticity problems. To deal with hanging nodes arising in the adaptive mesh refinement, we propose new transition types of hybrid stress quadrilateral elements with 5 to 7 nodes. In particular, we derive a priori error estimation for the 5-node transition hybrid stress element to show that it is free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the Lamé constant λ. We introduce, for quadrilateral meshes, refinement/coarsening algorithms, which do not require storing the refinement tree explicitly, and give an adaptive algorithm. Finally, we provide some numerical results.