- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A new numerical algorithm for telegraph equations with homogeneous boundary conditions is proposed. Due to the damping terms in telegraph equations, there is no royal conservation law according to Noether's theorem. The algorithm originates from the discovery of a transform applied to a telegraph equation, which transforms the telegraph equation to a Klein-Gordon equation. The Symplectic method is then brought in this algorithm to solve the Klein-Gordon equation, which is based on the fact that the Klein-Gordon equation with the homogeneous boundary condition is a perfect Hamiltonian system and the symplectic method works very well for Hamiltonian systems. The transformation itself and the inverse transformation theoretically bring no error to the numerical computation. Therefore the error only comes from the symplectic scheme chosen. The telegraph equation is finally explicitly computed when an explicit symplectic scheme is utilized. A relatively long time result can be expected due to the application of the symplectic method. Meanwhile, we present order analysis for both one-dimensional and multi-dimensional cases in the paper. The efficiency of this approach is demonstrated with numerical examples.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1512-m2015-0256}, url = {http://global-sci.org/intro/article_detail/jcm/9796.html} }A new numerical algorithm for telegraph equations with homogeneous boundary conditions is proposed. Due to the damping terms in telegraph equations, there is no royal conservation law according to Noether's theorem. The algorithm originates from the discovery of a transform applied to a telegraph equation, which transforms the telegraph equation to a Klein-Gordon equation. The Symplectic method is then brought in this algorithm to solve the Klein-Gordon equation, which is based on the fact that the Klein-Gordon equation with the homogeneous boundary condition is a perfect Hamiltonian system and the symplectic method works very well for Hamiltonian systems. The transformation itself and the inverse transformation theoretically bring no error to the numerical computation. Therefore the error only comes from the symplectic scheme chosen. The telegraph equation is finally explicitly computed when an explicit symplectic scheme is utilized. A relatively long time result can be expected due to the application of the symplectic method. Meanwhile, we present order analysis for both one-dimensional and multi-dimensional cases in the paper. The efficiency of this approach is demonstrated with numerical examples.