- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The paper deals with a numerical method for solving nonlinear integro-parabolic problems of Fredholm type. A monotone iterative method, based on the method of upper and lower solutions, is constructed. This iterative method yields two sequences which converge monotonically from above and below, respectively, to a solution of a nonlinear difference scheme. This monotone convergence leads to an existence-uniqueness theorem. An analysis of convergence rates of the monotone iterative method is given. Some basic techniques for construction of initial upper and lower solutions are given, and numerical experiments with two test problems are presented.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1512-m2015-0241}, url = {http://global-sci.org/intro/article_detail/jcm/9795.html} }The paper deals with a numerical method for solving nonlinear integro-parabolic problems of Fredholm type. A monotone iterative method, based on the method of upper and lower solutions, is constructed. This iterative method yields two sequences which converge monotonically from above and below, respectively, to a solution of a nonlinear difference scheme. This monotone convergence leads to an existence-uniqueness theorem. An analysis of convergence rates of the monotone iterative method is given. Some basic techniques for construction of initial upper and lower solutions are given, and numerical experiments with two test problems are presented.