- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper studies the convergence rates of a moving mesh implicit finite difference method with interpolation for partial differential equations (PDEs) with moving boundary arising in Asian option pricing. The moving mesh scheme is based on Rannacher time-stepping approach whose idea is running the implicit Euler schemes in the initial few steps and continuing with Crank-Nicolson schemes. With graded meshes for time direction and moving meshes for space direction, the fully discretized scheme is constructed using quadratic interpolation between two consecutive time level for the PDEs with moving boundary. The second-order convergence rates in both time and space are proved and numerical examples are carried out to confirm the theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1601-m2014-0217}, url = {http://global-sci.org/intro/article_detail/jcm/9794.html} }This paper studies the convergence rates of a moving mesh implicit finite difference method with interpolation for partial differential equations (PDEs) with moving boundary arising in Asian option pricing. The moving mesh scheme is based on Rannacher time-stepping approach whose idea is running the implicit Euler schemes in the initial few steps and continuing with Crank-Nicolson schemes. With graded meshes for time direction and moving meshes for space direction, the fully discretized scheme is constructed using quadratic interpolation between two consecutive time level for the PDEs with moving boundary. The second-order convergence rates in both time and space are proved and numerical examples are carried out to confirm the theoretical results.