- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281-354] showed that mixed variational problems, and their numerical approximation by mixed methods, could be most completely understood using the ideas and tools of Hilbert complexes. This led to the development of the Finite Element Exterior Calculus (FEEC) for a large class of linear elliptic problems. More recently, Holst and Stern [Found. Comp. Math. 12:3 (2012), 263-293 and 363-387] extended the FEEC framework to semi-linear problems, and to problems containing variational crimes, allowing for the analysis and numerical approximation of linear and nonlinear geometric elliptic partial differential equations on Riemannian manifolds of arbitrary spatial dimension, generalizing surface finite element approximation theory. In this article, we develop another distinct extension to the FEEC, namely to parabolic and hyperbolic evolution systems, allowing for the treatment of geometric and other evolution problems. Our approach is to combine the recent work on the FEEC for elliptic problems with a classical approach to solving evolution problems via semi-discrete finite element methods, by viewing solutions to the evolution problem as lying in time-parameterized Hilbert spaces (or Bochner spaces). Building on classical approaches by Thomée for parabolic problems and Geveci for hyperbolic problems, we establish a priori error estimates for Galerkin FEM approximation in the natural parametrized Hilbert space norms. In particular, we recover the results of Thomée and Geveci for two-dimensional domains and lowest-order mixed methods as special cases, effectively extending their results to arbitrary spatial dimension and to an entire family of mixed methods. We also show how the Holst and Stern framework allows for extensions of these results to certain semi-linear evolution problems.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1610-m2015-0319}, url = {http://global-sci.org/intro/article_detail/jcm/9769.html} }Arnold, Falk, and Winther [Bull. Amer. Math. Soc. 47 (2010), 281-354] showed that mixed variational problems, and their numerical approximation by mixed methods, could be most completely understood using the ideas and tools of Hilbert complexes. This led to the development of the Finite Element Exterior Calculus (FEEC) for a large class of linear elliptic problems. More recently, Holst and Stern [Found. Comp. Math. 12:3 (2012), 263-293 and 363-387] extended the FEEC framework to semi-linear problems, and to problems containing variational crimes, allowing for the analysis and numerical approximation of linear and nonlinear geometric elliptic partial differential equations on Riemannian manifolds of arbitrary spatial dimension, generalizing surface finite element approximation theory. In this article, we develop another distinct extension to the FEEC, namely to parabolic and hyperbolic evolution systems, allowing for the treatment of geometric and other evolution problems. Our approach is to combine the recent work on the FEEC for elliptic problems with a classical approach to solving evolution problems via semi-discrete finite element methods, by viewing solutions to the evolution problem as lying in time-parameterized Hilbert spaces (or Bochner spaces). Building on classical approaches by Thomée for parabolic problems and Geveci for hyperbolic problems, we establish a priori error estimates for Galerkin FEM approximation in the natural parametrized Hilbert space norms. In particular, we recover the results of Thomée and Geveci for two-dimensional domains and lowest-order mixed methods as special cases, effectively extending their results to arbitrary spatial dimension and to an entire family of mixed methods. We also show how the Holst and Stern framework allows for extensions of these results to certain semi-linear evolution problems.