- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we continue the study of discontinuous Galerkin finite element methods for nonlinear diffusion equations following the direct discontinuous Galerkin (DDG) methods for diffusion problems [17] and the direct discontinuous Galerkin (DDG) methods for diffusion with interface corrections [18]. We introduce a numerical flux for the test function, and obtain a new direct discontinuous Galerkin method with symmetric structure. Second order derivative jump terms are included in the numerical flux formula and explicit guidelines for choosing the numerical flux are given. The constructed scheme has a symmetric property and an optimal $L^2(L^2)$ error estimate is obtained. Numerical examples are carried out to demonstrate the optimal $(k+1)$th order of accuracy for the method with $P^k$ polynomial approximations for both linear and nonlinear problems, under one-dimensional and two-dimensional settings.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1307-m4273}, url = {http://global-sci.org/intro/article_detail/jcm/9758.html} }In this paper we continue the study of discontinuous Galerkin finite element methods for nonlinear diffusion equations following the direct discontinuous Galerkin (DDG) methods for diffusion problems [17] and the direct discontinuous Galerkin (DDG) methods for diffusion with interface corrections [18]. We introduce a numerical flux for the test function, and obtain a new direct discontinuous Galerkin method with symmetric structure. Second order derivative jump terms are included in the numerical flux formula and explicit guidelines for choosing the numerical flux are given. The constructed scheme has a symmetric property and an optimal $L^2(L^2)$ error estimate is obtained. Numerical examples are carried out to demonstrate the optimal $(k+1)$th order of accuracy for the method with $P^k$ polynomial approximations for both linear and nonlinear problems, under one-dimensional and two-dimensional settings.