- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we present the error estimate for the fully discrete local discontinuous Galerkin algorithm to solve the linear convection-diffusion equation with Dirichlet boundary condition in one dimension. The time is advanced by the third order explicit total variation diminishing Runge-Kutta method under the reasonable temporal-spatial condition as general. The optimal error estimate in both space and time is obtained by aid of the energy technique, if we set the numerical flux and the intermediate boundary condition properly.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1212-m4174}, url = {http://global-sci.org/intro/article_detail/jcm/9735.html} }In this paper we present the error estimate for the fully discrete local discontinuous Galerkin algorithm to solve the linear convection-diffusion equation with Dirichlet boundary condition in one dimension. The time is advanced by the third order explicit total variation diminishing Runge-Kutta method under the reasonable temporal-spatial condition as general. The optimal error estimate in both space and time is obtained by aid of the energy technique, if we set the numerical flux and the intermediate boundary condition properly.