- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
On the Nonlinear Matrix Equation $X^s + A^*F(X)A = Q$ with $S≥ 1$
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-31-209,
author = {Duanmei Zhou, Guoliang Chen, Guoxing Wu and Xiangyun Zhang},
title = {On the Nonlinear Matrix Equation $X^s + A^*F(X)A = Q$ with $S≥ 1$},
journal = {Journal of Computational Mathematics},
year = {2013},
volume = {31},
number = {2},
pages = {209--220},
abstract = {
This work is concerned with the nonlinear matrix equation $X^s + A^*F(X)A= Q$ with $s ≥ 1$. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive semidefinite solution are derived, and perturbation bounds are presented.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1210-m4082}, url = {http://global-sci.org/intro/article_detail/jcm/9730.html} }
TY - JOUR
T1 - On the Nonlinear Matrix Equation $X^s + A^*F(X)A = Q$ with $S≥ 1$
AU - Duanmei Zhou, Guoliang Chen, Guoxing Wu & Xiangyun Zhang
JO - Journal of Computational Mathematics
VL - 2
SP - 209
EP - 220
PY - 2013
DA - 2013/04
SN - 31
DO - http://doi.org/10.4208/jcm.1210-m4082
UR - https://global-sci.org/intro/article_detail/jcm/9730.html
KW - Nonlinear matrix equations, Perturbation bound, Hermitian positive definite solution.
AB -
This work is concerned with the nonlinear matrix equation $X^s + A^*F(X)A= Q$ with $s ≥ 1$. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive semidefinite solution are derived, and perturbation bounds are presented.
Duanmei Zhou, Guoliang Chen, Guoxing Wu and Xiangyun Zhang. (2013). On the Nonlinear Matrix Equation $X^s + A^*F(X)A = Q$ with $S≥ 1$.
Journal of Computational Mathematics. 31 (2).
209-220.
doi:10.4208/jcm.1210-m4082
Copy to clipboard