- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Some Advances in the Study of Error Expansion for Finite Elements
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-4-368,
author = {Lin , Qun and Xie , Rui-Feng},
title = {Some Advances in the Study of Error Expansion for Finite Elements},
journal = {Journal of Computational Mathematics},
year = {1986},
volume = {4},
number = {4},
pages = {368--382},
abstract = {
For the eigenvalue problem on a smooth domain we prove that the Richardson extrapolation increases the accuracy from second to third order for linear finite elements, and from fourth ro fifth order for quadratic finite elements, without modification of the scheme near the boundary.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9600.html} }
TY - JOUR
T1 - Some Advances in the Study of Error Expansion for Finite Elements
AU - Lin , Qun
AU - Xie , Rui-Feng
JO - Journal of Computational Mathematics
VL - 4
SP - 368
EP - 382
PY - 1986
DA - 1986/04
SN - 4
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9600.html
KW -
AB -
For the eigenvalue problem on a smooth domain we prove that the Richardson extrapolation increases the accuracy from second to third order for linear finite elements, and from fourth ro fifth order for quadratic finite elements, without modification of the scheme near the boundary.
Lin , Qun and Xie , Rui-Feng. (1986). Some Advances in the Study of Error Expansion for Finite Elements.
Journal of Computational Mathematics. 4 (4).
368-382.
doi:
Copy to clipboard