arrow
Volume 4, Issue 2
The Exact Estimation of the Hermite-Fejér Interpolation

Xie-Hua Sun

J. Comp. Math., 4 (1986), pp. 182-191.

Published online: 1986-04

Export citation
  • Abstract

The exact pointwise estimation of the Hermite-Fejér interpolation process based on the zeros of the Jacobi polynomial $P^{(\alpha,\beta)}_n(x)(-1 ‹\alpha,\beta \leq 0)$ is given. The method employed is useful for other extended H-F interpolations also.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JCM-4-182, author = {Xie-Hua Sun}, title = {The Exact Estimation of the Hermite-Fejér Interpolation}, journal = {Journal of Computational Mathematics}, year = {1986}, volume = {4}, number = {2}, pages = {182--191}, abstract = {

The exact pointwise estimation of the Hermite-Fejér interpolation process based on the zeros of the Jacobi polynomial $P^{(\alpha,\beta)}_n(x)(-1 ‹\alpha,\beta \leq 0)$ is given. The method employed is useful for other extended H-F interpolations also.

}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9580.html} }
TY - JOUR T1 - The Exact Estimation of the Hermite-Fejér Interpolation AU - Xie-Hua Sun JO - Journal of Computational Mathematics VL - 2 SP - 182 EP - 191 PY - 1986 DA - 1986/04 SN - 4 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9580.html KW - AB -

The exact pointwise estimation of the Hermite-Fejér interpolation process based on the zeros of the Jacobi polynomial $P^{(\alpha,\beta)}_n(x)(-1 ‹\alpha,\beta \leq 0)$ is given. The method employed is useful for other extended H-F interpolations also.

Xie-Hua Sun. (1986). The Exact Estimation of the Hermite-Fejér Interpolation. Journal of Computational Mathematics. 4 (2). 182-191. doi:
Copy to clipboard
The citation has been copied to your clipboard