- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Two-Sided Interval Iterative Method for the Finite Dimensional Nonlinear Systems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-5-307,
author = {Zhao-Yong You and Xiao-Jun Chen},
title = {A Two-Sided Interval Iterative Method for the Finite Dimensional Nonlinear Systems},
journal = {Journal of Computational Mathematics},
year = {1987},
volume = {5},
number = {4},
pages = {307--315},
abstract = {
For the nonlinear system $$x=g(x)+h(x)+c, x\in R^n,$$ where $g$ and $h$ are isotone and antitone mappings respectively, a two-sided interval iterative method is presented, the initial condition of the two-sided iterative method is relaxed, and the convergence of the two methods are proved.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9554.html} }
TY - JOUR
T1 - A Two-Sided Interval Iterative Method for the Finite Dimensional Nonlinear Systems
AU - Zhao-Yong You & Xiao-Jun Chen
JO - Journal of Computational Mathematics
VL - 4
SP - 307
EP - 315
PY - 1987
DA - 1987/05
SN - 5
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9554.html
KW -
AB -
For the nonlinear system $$x=g(x)+h(x)+c, x\in R^n,$$ where $g$ and $h$ are isotone and antitone mappings respectively, a two-sided interval iterative method is presented, the initial condition of the two-sided iterative method is relaxed, and the convergence of the two methods are proved.
Zhao-Yong You and Xiao-Jun Chen. (1987). A Two-Sided Interval Iterative Method for the Finite Dimensional Nonlinear Systems.
Journal of Computational Mathematics. 5 (4).
307-315.
doi:
Copy to clipboard