- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper is an extension of [1]. In this paper the descent and ascent segments are introduced to replace respectively the descent and ascent directions in [1] and are used to extend the concepts of S-basin and basin of a minimizer of a function. Lemmas and theorems similar to those in [1] are proved for the filled function $$P(x,r,p)= \frac{1}{r+F(x)}exp(-|x-x^*_1|^2/\rho^2),$$ which is the same as that in [1], where $x^*_1$ is a constrained local minimizer of the problem (0.3) below and $$F(x)=f(x)+\sum^{m'}_{i=1}\mu_i|c_i(x)|+ \sum^m_{i=m'+1}\mu_i max(0, -c_i(x))$$ is the exact penalty function for the constrained minimization problem
$\mathop{\rm min}\limits_x f(x)$,
subject to $$c_i(x) = 0 , i = 1, 2, \cdots, m',$$ $$c_i(x) \ge 0 , i = m'+1, \cdots, m,$$ where $μ_i > 0 \ (i=1, 2, \cdots, m)$ are sufficiently large. When $x^*_1$ has been located, a saddle point or a minimizer $\hat{x}$ of $P(x,r,\rho)$ can be located by using the nonsmooth minimization method with some special termination principles. The $\hat{x}$ is proved to be in a basin of a lower minimizer $x^*_2$ of $F(x)$, provided that the ratio $\rho^2/[r+F(x^*_1)]$ is appropriately small. Thus, starting with $\hat{x}$ to minimize $F(x)$, one can locate $x^*_2$. In this way a constrained global minimizer of (0.3) can finally be found and termination will happen.
This paper is an extension of [1]. In this paper the descent and ascent segments are introduced to replace respectively the descent and ascent directions in [1] and are used to extend the concepts of S-basin and basin of a minimizer of a function. Lemmas and theorems similar to those in [1] are proved for the filled function $$P(x,r,p)= \frac{1}{r+F(x)}exp(-|x-x^*_1|^2/\rho^2),$$ which is the same as that in [1], where $x^*_1$ is a constrained local minimizer of the problem (0.3) below and $$F(x)=f(x)+\sum^{m'}_{i=1}\mu_i|c_i(x)|+ \sum^m_{i=m'+1}\mu_i max(0, -c_i(x))$$ is the exact penalty function for the constrained minimization problem
$\mathop{\rm min}\limits_x f(x)$,
subject to $$c_i(x) = 0 , i = 1, 2, \cdots, m',$$ $$c_i(x) \ge 0 , i = m'+1, \cdots, m,$$ where $μ_i > 0 \ (i=1, 2, \cdots, m)$ are sufficiently large. When $x^*_1$ has been located, a saddle point or a minimizer $\hat{x}$ of $P(x,r,\rho)$ can be located by using the nonsmooth minimization method with some special termination principles. The $\hat{x}$ is proved to be in a basin of a lower minimizer $x^*_2$ of $F(x)$, provided that the ratio $\rho^2/[r+F(x^*_1)]$ is appropriately small. Thus, starting with $\hat{x}$ to minimize $F(x)$, one can locate $x^*_2$. In this way a constrained global minimizer of (0.3) can finally be found and termination will happen.