- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Fourth Order Finite Difference Approximation to the Eigenvalues Approximation to the Eigenvalues of a Clamped Plate
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-6-267,
author = {Tao , LüLiem , Chin Bo and Shih , Tis Min},
title = {A Fourth Order Finite Difference Approximation to the Eigenvalues Approximation to the Eigenvalues of a Clamped Plate},
journal = {Journal of Computational Mathematics},
year = {1988},
volume = {6},
number = {3},
pages = {267--271},
abstract = {
In a 21-point finite difference scheme, assign suitable interpolation values to the fictitious node points. The numerical eigenvalues are then of $O(h^2)$ precision. But the corrected value $\hat{λ}_h=λ_h+\frac{h^2}{6}λ_h^{\frac{3}{2}}$ and extrapolation $\hatλ_h=\frac{4}{3}λ_{\frac{λ}{2}}-\frac{1}{3}λ_h$ can be proved to have $O(h^4)$ precision.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9515.html} }
TY - JOUR
T1 - A Fourth Order Finite Difference Approximation to the Eigenvalues Approximation to the Eigenvalues of a Clamped Plate
AU - Tao , Lü
AU - Liem , Chin Bo
AU - Shih , Tis Min
JO - Journal of Computational Mathematics
VL - 3
SP - 267
EP - 271
PY - 1988
DA - 1988/06
SN - 6
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9515.html
KW -
AB -
In a 21-point finite difference scheme, assign suitable interpolation values to the fictitious node points. The numerical eigenvalues are then of $O(h^2)$ precision. But the corrected value $\hat{λ}_h=λ_h+\frac{h^2}{6}λ_h^{\frac{3}{2}}$ and extrapolation $\hatλ_h=\frac{4}{3}λ_{\frac{λ}{2}}-\frac{1}{3}λ_h$ can be proved to have $O(h^4)$ precision.
Tao , LüLiem , Chin Bo and Shih , Tis Min. (1988). A Fourth Order Finite Difference Approximation to the Eigenvalues Approximation to the Eigenvalues of a Clamped Plate.
Journal of Computational Mathematics. 6 (3).
267-271.
doi:
Copy to clipboard