- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Interval Iterative Methods Under Partial Ordering(Ⅰ)
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-6-39,
author = {You , Zhao-Yao and Chen , Xiao-Jun},
title = {Interval Iterative Methods Under Partial Ordering(Ⅰ)},
journal = {Journal of Computational Mathematics},
year = {1988},
volume = {6},
number = {1},
pages = {39--47},
abstract = {
Many types of nonlinear systems, which can be solved by ordered iterative methods, are discussed in unified form in the present paper. Under different initial conditions, some generalized ordered iterative methods are given, and the existence and uniqueness of the solution and the convergence of the methods are proved.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9496.html} }
TY - JOUR
T1 - Interval Iterative Methods Under Partial Ordering(Ⅰ)
AU - You , Zhao-Yao
AU - Chen , Xiao-Jun
JO - Journal of Computational Mathematics
VL - 1
SP - 39
EP - 47
PY - 1988
DA - 1988/06
SN - 6
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9496.html
KW -
AB -
Many types of nonlinear systems, which can be solved by ordered iterative methods, are discussed in unified form in the present paper. Under different initial conditions, some generalized ordered iterative methods are given, and the existence and uniqueness of the solution and the convergence of the methods are proved.
You , Zhao-Yao and Chen , Xiao-Jun. (1988). Interval Iterative Methods Under Partial Ordering(Ⅰ).
Journal of Computational Mathematics. 6 (1).
39-47.
doi:
Copy to clipboard