- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Large Matrix Computations on Vector Computers
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-7-209,
author = {Yau Shu Wong},
title = {Large Matrix Computations on Vector Computers},
journal = {Journal of Computational Mathematics},
year = {1989},
volume = {7},
number = {2},
pages = {209--216},
abstract = {
Preconditionings have proved to be a powerful technique for accelerating the rate of convergence of an iterative method. This paper, which is concerned with the conjugate gradient algorithm for large matrix computations, investigates an approximate polynomial preconditioning strategy. The method is particularly attractive for implementation on vector computers.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9471.html} }
TY - JOUR
T1 - Large Matrix Computations on Vector Computers
AU - Yau Shu Wong
JO - Journal of Computational Mathematics
VL - 2
SP - 209
EP - 216
PY - 1989
DA - 1989/07
SN - 7
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9471.html
KW -
AB -
Preconditionings have proved to be a powerful technique for accelerating the rate of convergence of an iterative method. This paper, which is concerned with the conjugate gradient algorithm for large matrix computations, investigates an approximate polynomial preconditioning strategy. The method is particularly attractive for implementation on vector computers.
Yau Shu Wong. (1989). Large Matrix Computations on Vector Computers.
Journal of Computational Mathematics. 7 (2).
209-216.
doi:
Copy to clipboard