- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Iterative Methods for Boundary Integral Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-7-140,
author = {R. E. Kleinman},
title = {Iterative Methods for Boundary Integral Equations},
journal = {Journal of Computational Mathematics},
year = {1989},
volume = {7},
number = {2},
pages = {140--150},
abstract = {
We review some iterative methods for solving boundary integral equations which arise in Dirichlet and Neumann problems for the Helmholtz and Laplace equations. In particular we show how these integral equations may be transformed so that they may be solved by Neumann-Poincare Picard iteration.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9464.html} }
TY - JOUR
T1 - Iterative Methods for Boundary Integral Equations
AU - R. E. Kleinman
JO - Journal of Computational Mathematics
VL - 2
SP - 140
EP - 150
PY - 1989
DA - 1989/07
SN - 7
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9464.html
KW -
AB -
We review some iterative methods for solving boundary integral equations which arise in Dirichlet and Neumann problems for the Helmholtz and Laplace equations. In particular we show how these integral equations may be transformed so that they may be solved by Neumann-Poincare Picard iteration.
R. E. Kleinman. (1989). Iterative Methods for Boundary Integral Equations.
Journal of Computational Mathematics. 7 (2).
140-150.
doi:
Copy to clipboard