- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper summarizes the results of comparative testing of (1) Wilf's global bisection method, (2) the Laguerre method, (3) the companion matrix eigenvalue method, (4) the companion matrix eigenvalue method with balancing, and (5) the Jenkens-Traub method, all of which are methods for finding the zeros of polynomials. The test set of polynomials used are those suggested by [5]. The methods were compared on each test polynomials on the basis of the accuracy of the computed roots and the CPU time required to numerically compute all roots.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9433.html} }This paper summarizes the results of comparative testing of (1) Wilf's global bisection method, (2) the Laguerre method, (3) the companion matrix eigenvalue method, (4) the companion matrix eigenvalue method with balancing, and (5) the Jenkens-Traub method, all of which are methods for finding the zeros of polynomials. The test set of polynomials used are those suggested by [5]. The methods were compared on each test polynomials on the basis of the accuracy of the computed roots and the CPU time required to numerically compute all roots.