- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A nonconforming finite element method of streamline diffusion type for solving the stationary and incompressible Navier-Stokes equation is considered. Velocity field and pressure field are approximated by piecewise linear and piecewise constant functions, respectively. The existence of solutions of the discrete problem and the strong convergence of a subsequence of discrete solutions are established. Error estimates are presented for the uniqueness case.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9428.html} }A nonconforming finite element method of streamline diffusion type for solving the stationary and incompressible Navier-Stokes equation is considered. Velocity field and pressure field are approximated by piecewise linear and piecewise constant functions, respectively. The existence of solutions of the discrete problem and the strong convergence of a subsequence of discrete solutions are established. Error estimates are presented for the uniqueness case.