- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, the concept of optimally scaled matrix and the estimate of $\|M^{-1}N\|_{\infty}$ in our previous paper are used to find the upper bounds of the spectral radii of the iterative matrices SOR, SSOR, AOR and SAOR. The sharpness of the upper bounds of the spectral radii of SOR and AOR is established. The proofs are very intuitive and may be considered as the geometrical interpretations of our theorems.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9425.html} }In this paper, the concept of optimally scaled matrix and the estimate of $\|M^{-1}N\|_{\infty}$ in our previous paper are used to find the upper bounds of the spectral radii of the iterative matrices SOR, SSOR, AOR and SAOR. The sharpness of the upper bounds of the spectral radii of SOR and AOR is established. The proofs are very intuitive and may be considered as the geometrical interpretations of our theorems.