- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Completely Exponentially Fitted Difference Scheme for a Singular Perturbation Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-8-1,
author = {Lin , Peng-Cheng and Sun , Guang-Fu},
title = {A Completely Exponentially Fitted Difference Scheme for a Singular Perturbation Problem},
journal = {Journal of Computational Mathematics},
year = {1990},
volume = {8},
number = {1},
pages = {1--15},
abstract = {
A completely exponentially fitted difference scheme is considered for the singular perturbation problem: $\epsilon U^{''}+a(x) U^{'}-b(x) U=f(x) \ {\rm for} \ 0 \lt x \lt 1$, with U(0), and U(1) given, $\epsilon \in (0,1]$ and $a(x) \gt α \gt 0, b(x)\geq 0$. It is proven that the scheme is uniformly second-order accurate.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9414.html} }
TY - JOUR
T1 - A Completely Exponentially Fitted Difference Scheme for a Singular Perturbation Problem
AU - Lin , Peng-Cheng
AU - Sun , Guang-Fu
JO - Journal of Computational Mathematics
VL - 1
SP - 1
EP - 15
PY - 1990
DA - 1990/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9414.html
KW -
AB -
A completely exponentially fitted difference scheme is considered for the singular perturbation problem: $\epsilon U^{''}+a(x) U^{'}-b(x) U=f(x) \ {\rm for} \ 0 \lt x \lt 1$, with U(0), and U(1) given, $\epsilon \in (0,1]$ and $a(x) \gt α \gt 0, b(x)\geq 0$. It is proven that the scheme is uniformly second-order accurate.
Lin , Peng-Cheng and Sun , Guang-Fu. (1990). A Completely Exponentially Fitted Difference Scheme for a Singular Perturbation Problem.
Journal of Computational Mathematics. 8 (1).
1-15.
doi:
Copy to clipboard