- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In the late 1970's, Wiggins proposed a minimum entropy deconvolution (MED) which has become one of the most important deconvolution methods. He gave a varimax norm $V^4_2$ and a MED iterative procedure. Fortunately, for the last ten years in the practical using, the MED algorithm has never failed to reach a maximizer of the varimax norm. But so far, no theoretical proof has been given to show the convergence of the MED procedure. In this paper, we prove the global convergence of a generalized MED iterative procedure with respect to a generalized varimax norm $V^p_q(q=2,p \gt 2)$.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9385.html} }In the late 1970's, Wiggins proposed a minimum entropy deconvolution (MED) which has become one of the most important deconvolution methods. He gave a varimax norm $V^4_2$ and a MED iterative procedure. Fortunately, for the last ten years in the practical using, the MED algorithm has never failed to reach a maximizer of the varimax norm. But so far, no theoretical proof has been given to show the convergence of the MED procedure. In this paper, we prove the global convergence of a generalized MED iterative procedure with respect to a generalized varimax norm $V^p_q(q=2,p \gt 2)$.