- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Spectral-Difference Scheme for Three-Dimensional Vorticity Equations with Single Periodical Boundary Condition
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-9-57,
author = {Guo , Ben-Yu},
title = {A Spectral-Difference Scheme for Three-Dimensional Vorticity Equations with Single Periodical Boundary Condition},
journal = {Journal of Computational Mathematics},
year = {1991},
volume = {9},
number = {1},
pages = {57--73},
abstract = {
We develop a spectral-difference scheme to solve three-dimensional vorticity equation with single periodical boundary condition. We prove the conservation, generalized stability and convergence. The numerical experiments show that this scheme gives much better results than usual difference schemes.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9378.html} }
TY - JOUR
T1 - A Spectral-Difference Scheme for Three-Dimensional Vorticity Equations with Single Periodical Boundary Condition
AU - Guo , Ben-Yu
JO - Journal of Computational Mathematics
VL - 1
SP - 57
EP - 73
PY - 1991
DA - 1991/09
SN - 9
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9378.html
KW -
AB -
We develop a spectral-difference scheme to solve three-dimensional vorticity equation with single periodical boundary condition. We prove the conservation, generalized stability and convergence. The numerical experiments show that this scheme gives much better results than usual difference schemes.
Guo , Ben-Yu. (1991). A Spectral-Difference Scheme for Three-Dimensional Vorticity Equations with Single Periodical Boundary Condition.
Journal of Computational Mathematics. 9 (1).
57-73.
doi:
Copy to clipboard