arrow
Volume 9, Issue 1
On Stability and Convergence of the Finite Difference Methods for the Nonlinear Pseudo-Parabolic System

Ming-Sheng Du

J. Comp. Math., 9 (1991), pp. 41-56.

Published online: 1991-09

Export citation
  • Abstract

In this paper, we deal with the finite difference method for the initial boundary value problem of the nonlinear pseudo-parabolic system $(-1)^Mu_t+A(x,t,u,u_x,\cdots,u_x 2M-1)u_x2M_t=F(x,t,u,u_x,\cdots,u_x 2M)$,$u_xk(o,t)=\psi_{0k}(t), u_xk(L,t)=\psi_{1k}(t),k=0,1,\cdots,M-1,u(x,0)=\phi (x)$ in the rectangular domain $D=[0\leq X\leq L,0\leq t\leq T]$, where $u(x,t)=(u_1(x,t),u_2(x,t),\cdots,u_m(x,t)),\phi (x),\psi_{0k}(t),\psi_{1k}(t),F(x,t,u,u_x,\cdots,u_x 2M)$ are $m$-dimensional vector functions, and $A(x,t,u,u_x,\cdots,u_x2M-1)$ is an $m\times m$ positive definite matrix. The existence and uniqueness of solution for the finite difference system are proved by fixed-point theory. Stability, convergence and error estimates are derived.

  • Keywords

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JCM-9-41, author = {Du , Ming-Sheng}, title = {On Stability and Convergence of the Finite Difference Methods for the Nonlinear Pseudo-Parabolic System}, journal = {Journal of Computational Mathematics}, year = {1991}, volume = {9}, number = {1}, pages = {41--56}, abstract = {

In this paper, we deal with the finite difference method for the initial boundary value problem of the nonlinear pseudo-parabolic system $(-1)^Mu_t+A(x,t,u,u_x,\cdots,u_x 2M-1)u_x2M_t=F(x,t,u,u_x,\cdots,u_x 2M)$,$u_xk(o,t)=\psi_{0k}(t), u_xk(L,t)=\psi_{1k}(t),k=0,1,\cdots,M-1,u(x,0)=\phi (x)$ in the rectangular domain $D=[0\leq X\leq L,0\leq t\leq T]$, where $u(x,t)=(u_1(x,t),u_2(x,t),\cdots,u_m(x,t)),\phi (x),\psi_{0k}(t),\psi_{1k}(t),F(x,t,u,u_x,\cdots,u_x 2M)$ are $m$-dimensional vector functions, and $A(x,t,u,u_x,\cdots,u_x2M-1)$ is an $m\times m$ positive definite matrix. The existence and uniqueness of solution for the finite difference system are proved by fixed-point theory. Stability, convergence and error estimates are derived.

}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9377.html} }
TY - JOUR T1 - On Stability and Convergence of the Finite Difference Methods for the Nonlinear Pseudo-Parabolic System AU - Du , Ming-Sheng JO - Journal of Computational Mathematics VL - 1 SP - 41 EP - 56 PY - 1991 DA - 1991/09 SN - 9 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9377.html KW - AB -

In this paper, we deal with the finite difference method for the initial boundary value problem of the nonlinear pseudo-parabolic system $(-1)^Mu_t+A(x,t,u,u_x,\cdots,u_x 2M-1)u_x2M_t=F(x,t,u,u_x,\cdots,u_x 2M)$,$u_xk(o,t)=\psi_{0k}(t), u_xk(L,t)=\psi_{1k}(t),k=0,1,\cdots,M-1,u(x,0)=\phi (x)$ in the rectangular domain $D=[0\leq X\leq L,0\leq t\leq T]$, where $u(x,t)=(u_1(x,t),u_2(x,t),\cdots,u_m(x,t)),\phi (x),\psi_{0k}(t),\psi_{1k}(t),F(x,t,u,u_x,\cdots,u_x 2M)$ are $m$-dimensional vector functions, and $A(x,t,u,u_x,\cdots,u_x2M-1)$ is an $m\times m$ positive definite matrix. The existence and uniqueness of solution for the finite difference system are proved by fixed-point theory. Stability, convergence and error estimates are derived.

Du , Ming-Sheng. (1991). On Stability and Convergence of the Finite Difference Methods for the Nonlinear Pseudo-Parabolic System. Journal of Computational Mathematics. 9 (1). 41-56. doi:
Copy to clipboard
The citation has been copied to your clipboard