- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A lot of curve fitting problems of experiment data lead to solution of an overdetermined system of linear equations. But it is not clear prior to that whether the data are exact or contaminated with errors of an unknown nature. Consequently we need to use not only $L_2$-solution of the system but also $L_{\infty}$- or $L_p$-solution.
In this paper, we propose a universal algorithm called the Directional Perturbation Least Squares (DPLS) Algorithm, which can give optimal solutions of an overdetermined system of linear equations in $L_2$, $L_{\infty}$,$L_p (1\leq p<2)$ norms using only L.S. techniques (in $\S$2). Theoretical principle of the algorithm is given in $\S$ 3. Two examples are given in the end.
A lot of curve fitting problems of experiment data lead to solution of an overdetermined system of linear equations. But it is not clear prior to that whether the data are exact or contaminated with errors of an unknown nature. Consequently we need to use not only $L_2$-solution of the system but also $L_{\infty}$- or $L_p$-solution.
In this paper, we propose a universal algorithm called the Directional Perturbation Least Squares (DPLS) Algorithm, which can give optimal solutions of an overdetermined system of linear equations in $L_2$, $L_{\infty}$,$L_p (1\leq p<2)$ norms using only L.S. techniques (in $\S$2). Theoretical principle of the algorithm is given in $\S$ 3. Two examples are given in the end.